0=-16x^2+112x+25

Simple and best practice solution for 0=-16x^2+112x+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+112x+25 equation:



0=-16x^2+112x+25
We move all terms to the left:
0-(-16x^2+112x+25)=0
We add all the numbers together, and all the variables
-(-16x^2+112x+25)=0
We get rid of parentheses
16x^2-112x-25=0
a = 16; b = -112; c = -25;
Δ = b2-4ac
Δ = -1122-4·16·(-25)
Δ = 14144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14144}=\sqrt{64*221}=\sqrt{64}*\sqrt{221}=8\sqrt{221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-8\sqrt{221}}{2*16}=\frac{112-8\sqrt{221}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+8\sqrt{221}}{2*16}=\frac{112+8\sqrt{221}}{32} $

See similar equations:

| 64^2x-3=16^x | | 3^x+2=138 | | 2016=1/2a×12+12 | | 180=19x+x | | 100-x+x+2x=180 | | 2(2x−6)=28 | | 5/2t-4=7/2t | | 2(2x−6)=2(2x−6)=28 | | 15x+2=15x+2=10x+710x+7 | | 7j-21=3j+7 | | 3x*3x-15x=0 | | 2352=a14+14 | | 25^2x-2=5 | | 2352=a×14+14 | | f-6/5=15 | | P+y=M/M | | 2=m÷2-7 | | P=M-y/M | | 21/90*(2,5x-6)-x-3/12=1,25X+1/10 | | 4n+6=3n+8 | | 5x^2-8=-62+2x^2 | | (-4x+36x-16x)/(-4)=0 | | 5=50+10n | | 3x*3x+9x=0 | | 3(6s+12-(10s-6)=0 | | 2x*2x+3x+2=0 | | 2H=r+16 | | -3(x+.2)=1.5 | | 9x*9x-12x+4=0 | | -5x*5x+4x-2=0 | | .379555=x/489100-x | | 13×y+y=120 |

Equations solver categories